
Why should we migrate to Multitenant architecture
2016-09-23

Feature of our Oracle Databases - Why should
we migrate to Multitenant architecture

Radosław Cisz
rcisz@dataconsulting.pl

Why should we migrate to Multitenant architecture
2016-09-23

Multitenant New Terminology

Basic terminology connected with multitenant architecture

● Non-CDB database
● CDB database
● ROOT container
● PDB
● UnPlug database
● Plug Database

Why should we migrate to Multitenant architecture
2016-09-23

Multitenant New Terminology

• Non CDB database
● Traditional database not plugged into container for

databases

• CDB database
● Database that is part of container with other databases.
● Other databases can be ROOT container

(CDB$ROOT), SEED (CDB$SEED) database, other
pluggable databases (PDBs)

Why should we migrate to Multitenant architecture
2016-09-23

Multitenant New Terminology

● ROOT container

– In other words ROOT database
– Main database in Container
– Keeps among others

● Shared objects
● Common users
● Common roles
● PDB specific settings
● One common instance

Why should we migrate to Multitenant architecture
2016-09-23

Multitenant New Terminology

• PDB
● Database that is part of container
● Was created in specific container or

– Was plugged from another container
– Was plugged from non-CDB database

Why should we migrate to Multitenant architecture
2016-09-23

Multitenant New Terminology

• UnPlug database
● Process of describing database architecture in XML

format,
● Packageing it into tar format, ready to transfer and plug

• Plug database
● Process of attaching/including database into container

– From unplugged database
– From backup using RMAN
– From non-CDB database

Why should we migrate to Multitenant architecture
2016-09-23

Description of Multitenant Architecture

• Multitenant is mainly consolidation option
● In opposite

– to schemas for applications
– Multiple instances on one server

• Multiple databases in centrally managed platform

• Provides isolation

Why should we migrate to Multitenant architecture
2016-09-23

Schema based consolidation

• Cons

● Name collision might prevent schema-based consolidation
● Schema-based consolidation brings weak security
● Per application backend point-in-time recovery is

prohibitively difficult
● Resource management between application backends is

difficult
● Patching the Oracle version for a single application backend

is not possible
● Cloning a single application backend is difficult. Data Pump

is the only option

Why should we migrate to Multitenant architecture
2016-09-23

Multiple instances consolidation

• Cons
● Increased memory and CPU utilization
● High cost of ownership

Why should we migrate to Multitenant architecture
2016-09-23

Benefits of Multitenant DBs

• Benefits
● Because of single instance for whole container

– Less background processes
– Better CPU utilization
– Better memory utilization

● Because of single dictionary for Oracle Supplied objects
and packages
– Better storage utilization

Why should we migrate to Multitenant architecture
2016-09-23

Benefits of Multitenant DBs

● Reduced DBA cost
– No demands for application changes
– Unified and simplified patching and upgrade'ing
– Separation of duties

● DBA
● CDBA
● PDBA

● Backward compatibility with Non-CDB databases
● Integrated with Resource Manager (Inter PDBs plans)
● Simplified backup procedures

Why should we migrate to Multitenant architecture
2016-09-23

Description of Multitenant Architecture

• Multitenant configuration
● Can act as RAC
● Can act as single instance

• Singletenant configuration
● No fee for additional license
● One pluggable database in single Container EE/SE2

Why should we migrate to Multitenant architecture
2016-09-23

Description of Multitenant Architecture

• Root database (CDB$ROOT) is like management
database

• Cannot open PDB without opened Root database

Why should we migrate to Multitenant architecture
2016-09-23

Description of Multitenant Architecture
• Each DB Shares

● Backgroud processes
● Shared memory
● Process memory
● Oracle metadata
● Redo Logs/Archive Logs
● Undo Tablespace
● Control Files
● Optionally – Temporary Tablespace
● Each PDB has corresponding SERVICE, by default

PDB name + domain Name

Why should we migrate to Multitenant architecture
2016-09-23

Types of containers
• Root Container

• Pluggable database containers
● Application Tablespaces
● Local Users/Roles
● Local Objects/Schemas/Privileges
● Local Non-Shared Application Metadata
● PDB Resource Manager Plan

● PDB$SEED

● 252 PDBs not counting PDB$SEED

● 512 Services in CDB

● V$CONTAINERS

Why should we migrate to Multitenant architecture
2016-09-23

Separation of System and User Data

• Pristine installation

• Non - Mixed Metadata for User and System

Why should we migrate to Multitenant architecture
2016-09-23

Horizontal Partitioning of Data Dictionary

Why should we migrate to Multitenant architecture
2016-09-23

Separation of System and User Data

• Metadata for system objects (Oracle Supplied Objects)
visible in each PDB by „links”, without duplicate'ing
them

• CDB$ROOT is the name for root database

• CDB$SEED is the name for always Read-Only
database, used to create empty PDBs

• PDBs communicates with each other using extremely
fast Intra-CDB database links

Why should we migrate to Multitenant architecture
2016-09-23

Common vs Local Users/Privileges/Roles

• Common Users
● CDB_USERS (COMMON) / DBA_USERS on PDB and

ROOT scope
● Are created only in CDB$ROOT replicated into each

PDB
● Can be granted COMMON (In CDB$ROOT) and

LOCAL privileges/roles (In PDB)

• Local Users
● Defined in a specific container
● Can connect/manage , be granted only local privileges

Why should we migrate to Multitenant architecture
2016-09-23

Common vs Local Users/Privileges/Roles

• Common Roles
● Created only in ROOT
● Replicated in each PDB
● Can be granted to common users/roles
● All Oracle supplied roles are common roles

• Local Roles
● Created in specific container
● Cannot contain common privileges/roles
● Can be granted to common and local users

Why should we migrate to Multitenant architecture
2016-09-23

Common vs Local Users/Privileges/Roles

• Common Privileges
● Granted in ROOT
● Can be granted to common users/roles
● Can refer to common and local objects

• Local Privileges
● Granted in specific PDB
● Can be granted to common / local users/roles

•

Why should we migrate to Multitenant architecture
2016-09-23

Metadata linked / Object Linked Objects

• Metadata Linked Dictionary Objects
● Store metadata about shared objects only in root
● Each PDB has own copy of data pointing to ROOT

metadata

• Object Linked Dictionary Objects
● Metadata and data exists only in ROOT dictionary

● New column SHARING in DBA_OBJECTS

Why should we migrate to Multitenant architecture
2016-09-23

New Multitenant Dictionary Views
• CDB_XXX

● DBA_XXX
– ALL_XXX

● USER_XXX

• DBA_XXX views maintained for backward
compatibility

• CDB_XXX
● In Common Scope (ROOT) – artifacts from all currently

open PDBs and ROOT
● New CON_ID column
● In Local Scope

Why should we migrate to Multitenant architecture
2016-09-23

New Multitenant Dictionary Views
● Export ORACLE_SID=CDB1

– Select role,common,con_id from cdb_roles;
– Select role,common,con_id from dba_roles;
– Select name,open_mode from v$pdbs;

● Connect sys@PDB1 as sysdba
– Select role,common,con_id from cdb_roles;

● Displays common users and local PDB1 users

• V$_ VIEWS
● Select distinct status,con_id from v$bh order by con_id;
● Select object_id,oracle_username,locked_mode,con_id

from v$locked_object;

mailto:sys@PDB1

Why should we migrate to Multitenant architecture
2016-09-23

General Considerations about Multitenant

• One SPFILE

• Data Guard at CDB level

• Flashback database at CDB level

• One characterset for all containers

Why should we migrate to Multitenant architecture
2016-09-23

Why should we migrate to Multitenant architecture
2016-09-23

Creation of Container Databases

• Supported Tools
● OUI
● DBCA
● SQL Developer
● EM CC

• New parameter and statement
● enable_pluggable_database
● CREATE DATABASE .. ENABLE PLUGGABLE

DATABASE

Why should we migrate to Multitenant architecture
2016-09-23

Creation of Container Databases
● Export ORACLE_SID
● Set enable_pluggable_database parameter to true
● Startup nomount
● CREATE DATABASE CDB ENABLE PLUGGABLE DATABASE

SEED
FILE_NAME_CONVERT('/u01/oradata','/u01/oradata/seed');

● Alter session set "_oracle_scripts"=true;
● Alter pluggable database pdb$seed close;
● Alter pluggable database pdb$seed open;
● @catalog.sql
● @catblock.sql
● @catproc.sql
● @catoctk.sql
● @owminst.sql
● @pupbld.sql

Why should we migrate to Multitenant architecture
2016-09-23

Creation of Container Databases

• SELECT NAME, CDB, CON_ID FROM V$DATABASE;
 NAME CDB CON_ID

 CDB1 YES 0

• File location parameters

● Using OMF – DB_CREATE_FILE_DEST

● Without OMF - PDB_FILE_NAME_CONVERT

•

Why should we migrate to Multitenant architecture
2016-09-23

Creation of PDB

• CREATE PLUGGABLE DATABASE ...

Why should we migrate to Multitenant architecture
2016-09-23

Creation of PDB

Why should we migrate to Multitenant architecture
2016-09-23

Create from SEED

• CREATE PLUGGABLE DATABASE pdb1 ADMIN
USER pdba1 IDENTIFIED BY oracle;

Why should we migrate to Multitenant architecture
2016-09-23

Create from SEED

• Copied datafiles of user tablespaces

• Created SYSTEM,SYSAUX tablespaces

• Creates full catalog including metadata pointing to
Oracle-Supplied objects

• Creates common users
● SYSTEM, SYS

• Creates a local dba user PDBA granted PDB_DBA
role

• Creates default service

Why should we migrate to Multitenant architecture
2016-09-23

Creation of a PDB by Cloning a PDB or a
Non-CDB

• CREATE PLUGGABLE DATABASE salespdb FROM
hrpdb

● You can use the CREATE PLUGGABLE DATABASE statement
to clone a source PDB or non-CDB and plug the clone into the
CDB

● Source can be a PDB in a local or remote CDB, or starting in
Oracle Database 12c Release 1 (12.1.0.2), it can also be a
remote non-CDB

● Great benefit of storage savings when filesystem support
Snapshots copies

•

Why should we migrate to Multitenant architecture
2016-09-23

Creation of a PDB by Cloning a PDB or a
Non-CDB

Why should we migrate to Multitenant architecture
2016-09-23

Creation of a PDB by Plugging In an
Unplugged PDB

• CREATE PLUGGABLE DATABASE pdb2 USING
'/u01/oradata/pdb1.xml' NOCOPY;

– In its unplugged state, a PDB is a self-contained set of
data files and an XML metadata file

– XML metadata file describes PDBs
– Use NOCOPY option if target datafiles are in desired

location
– Default is COPY

Why should we migrate to Multitenant architecture
2016-09-23

Creation of a PDB by Plugging In an
Unplugged PDB

Why should we migrate to Multitenant architecture
2016-09-23

Creation of a PDB from a Non-CDB

Why should we migrate to Multitenant architecture
2016-09-23

Other options

• Create empty PDB from SEED and USE
● DataPump (transportable tablespaces or full exp/imp)
● Golden Gate to replicate database

Why should we migrate to Multitenant architecture
2016-09-23

Unplug/plug across different endiannesses

– When a customer-created tablespace is converted from
one endianness to the other, using the RMAN convert
command, it is only block headers that are changed
(because these are encoded in an endianness-sensitive
way)

– unplugged PDB contains data dictionary tables, and
some of the columns in these encode information in an
endianness-sensitive way

● Conclusions:
– There is no supported way to handle the conversion of

such columns automatically. This means, quite simply,
that an unplugged PDB cannot be moved across an
endianness difference.

Why should we migrate to Multitenant architecture
2016-09-23

Unplug/plug across different operating
systems, chipsets

– PL/SQL native compilation might have been used
– Particular data dictionary table will hold machine code
– That is sensitive to the chipset of the platform where it

was compiled
• Conclusions

– All natively compiled PL/SQL units in the incoming PDB
must be recompiled before the PDB can be made
available for general use

Why should we migrate to Multitenant architecture
2016-09-23

Unplug/plug for patching the Oracle Patch
version

– Soft Patch - changes only binaries
– Hard Patches - changes bianries and data dictionary

(body not specification)
• Conclusions

– Since data dictionary is in ROOT PDB does not need to
be changed

Why should we migrate to Multitenant architecture
2016-09-23

Working with CDBs and PDBs

• Connection to PDBs
● By default there is still one listener process
● Each PDB has registered default unique accross CDB

service
– SQL> Show CON_NAME
– SQL> Select name,pdb from cdb_services;

● Use DBMS_SERVICE.CREATE_SERVICE in non-
Oracle Clusterware/Oracle Restart configuration

● srvctl add service -d cdb1 -service pdb1_srv -pdb pdb1

Why should we migrate to Multitenant architecture
2016-09-23

Working with CDBs and PDBs

• User with SET CONTAINER privilege
● Alter session set container=pdbapp1;

– Do not fire AFLTER LOGON TRIGGERS
● Show con_name;
● Alter session set container=CDB$ROOT;

Why should we migrate to Multitenant architecture
2016-09-23

Working with CDBs and PDBs

• Command with a scope of pluggable database
● SQL> Alter System Flush Shared_Pool;
● SQL> Alter System Flush Buffer_Cache;
● SQL> Alter System Enable Restricted Session;
● SQL> Alter System Kill Session ..

• Command that affect whole CDB
● SQL> Alter System Checkpoint;
● SQL> Alter System Switch Logfile;

Why should we migrate to Multitenant architecture
2016-09-23

Starting CDB

SQL> Connect sys@CDB1 as sysdba
SQL> Alter Pluggable Database PDB1 OPEN;
SQL> Alter Pluggable Database ALL OPEN;
SQL> Alter Pluggable Database ALL EXCEPT PDB1 OPEN;
SQL> Alter Pluggable Database PDB1 CLOSE IMMEDIATE;
SQL> Alter Pluggable Database ALL EXCEPT PDB1 CLOSE;
SQL> Alter Pluggable Database ALL CLOSE;
SQL> Connect sys@pdb1 as sysdba

SQL> Alter Pluggable Database Close;
or
SQL> Shutdown Immediate
SQL> Alter Pluggable Database Open Restricted;

Why should we migrate to Multitenant architecture
2016-09-23

Modify PDB Settings

• connect sys@PDB1 as sysdba
● SQL> alter pluggable database datafile

'/u01/oradata/pdb1/user01.dbf' ONLINE;
● SQL> Alter pluggable database default temporary

tablespace TEMP1;
● SQL> Alter pluggable database STORAGE (MAXSIZE

15G);

mailto:sys@PDB1

Why should we migrate to Multitenant architecture
2016-09-23

Instance parameters for PDB

• One common spfile;

• New column ISPDB_MODIFYABLE in v$parameter

• Persistent between restarts

• Stored in CDB$ROOT dictionary
● Alter System set job_queue=4 ;
● Select DB_UNIQ_NAME,PDB_UID,NAME,VALUE$

from pdb_spfile$;

Why should we migrate to Multitenant architecture
2016-09-23

Users / Privileges / Roles Security

• Common User
● SQL> Create User c##user1 identified by oracle

container=ALL;
● SQL> Grant create session to c##user1 container=ALL;

• Local User
● SQL> Create User user2 identified by oracle

container=CURRENT;
● SQL> Grant create table to user2 (container=current);

Why should we migrate to Multitenant architecture
2016-09-23

Users / Privileges / Roles Security

• Common role
● SQL> CREATE ROLE c##r1 CONTAINER=ALL;

– Can be granted common and local privileges
– Can be granted to local and common users

• Local role
● SQL> CREATE ROLE lr1 CONTAINER=CURRENT;

– Can be granted only local privileges
– Can be granted to common and local users in current

container

Why should we migrate to Multitenant architecture
2016-09-23

Differences in Backup and Recovery

• Export ORACLE_SID=CDB1

• rman target=/

• RMAN> BACKUP DATABASE;
● Above sequence of command backups all datafiles of

ROOT and PDB containers

• RMAN> BACKUP PLUGGABLE DATABASE
PDB1,PDB2;
● Backups datafiles of PDB1,PDB2 containers

Why should we migrate to Multitenant architecture
2016-09-23

Differences in Backup and Recovery

• RMAN> BACKUP PLUGGABLE DATABASE
„CDB$ROOT”;
● Backups only ROOT container datafiles

• RMAN> BACKUP TABLESPACE SYSTEM;
● Backups system tablespace of ROOT container

• RMAN> BACKUP TABLESPACE pdb1:SYSAUX;
● Backups SYSAUX tablespace of PDB1

Why should we migrate to Multitenant architecture
2016-09-23

Differences in Backup and Recovery

• Recovery
● Instance recovery pertains to whole CDB
● Flashback of database pertains to whole CDB

– All Containers are flashed-back
– If on one of PDBs Point In Time Recovery was perfomed,

it is impossible to flashback to point earlier then
PDBPITR was done

● During restart of CDB tempfiles are recreated
● Restart of PDB does not implicate local temporary

tablespace recreation

Why should we migrate to Multitenant architecture
2016-09-23

Differences in Backup and Recovery

• Recovery contd
● Lost CONTROLFILE/ROOT SYSTEM tablespace

implicates downtime for all PDBs, for the time of
controlfile restoration
– At CDB Level

● STARTUP NOMOUNT
● RESTORE CONTROLFILE FROM ..
● ALTER DATABASE MOUNT
● RECOVER DATABASE
● ALTER DATABASE OPEN RESETLOGS
● ALTER PLUGGABLE DATABASE ALL OPEN

Why should we migrate to Multitenant architecture
2016-09-23

Differences in Backup and Recovery

• Recovery contd
● Media failure of single PDB (SYSTEM TABLESPACE

of PDB), when PDB is not closed, can affect whole CDB
● When PDB is open, on CDB level

– SHUTDOWN IMMEDIATE
– STARTUP MOUNT
– RESTORE PLUGGABLE DATABASE PDB1
– RECOVER PLUGGABLE DATABASE PDB1
– ALTER DATABASE OPEN
– ALTER PLUGGABLE DATABASE PDB1 OPEN

Why should we migrate to Multitenant architecture
2016-09-23

Differences in Backup and Recovery

• Features like DATA RECOVERY ADVISOR works for
CDB$ROOT, and all PDBs

• Block Corruption Validation
● VALIDATE DATABASE

– All containers affected
● VALIDATE DATABASE ROOT
● VALIDATE PLUGGABLE DATABASE PDB1,PDB2

Why should we migrate to Multitenant architecture
2016-09-23

Differences in Backup and Recovery

• Database Duplication
● Create Auxiliary instance with

enable_pluggable_database set to TRUE
● CDB$ROOT and CDB$SEED are created during

duplication
– RMAN> DUPLICATE DATABASE TO CDB1

PLUGGABLE DATABASE PDB1,PDB2

Why should we migrate to Multitenant architecture
2016-09-23

AWR reports

• You can create AWR Reports for the CDB as a whole

• You can also create AWR Reports for a particular PDB

Why should we migrate to Multitenant architecture
2016-09-23

Upgrade in Multitenant configuration

• Everything at Once

• One at a Time
● via unplug/plug

• Everything at Once
● Using DBUA against CDB will upgrade CDB$ROOT

and all PDBs in container
● Pros

– One step operation
● Cons

– All pdbs are inaccessible for users

Why should we migrate to Multitenant architecture
2016-09-23

Upgrade in Multitenant configuration

• One at a Time
● Connect to PDB being upgraded

– connect sys@PDB1
● Execute preupgrade

– @/u01/app/oracle/product/12.1.0.2/omh1/rdbms/admin/preupgrd.sql
● If any errors met, it generates preupgrade_fixups.sql

– /u01/app/oracle/cfgtoollogs/cdb1/preupgrade/preupgrade_fixups.sql
● Execute fixups

– @/u01/app/oracle/cfgtoollogs/cdb1/preupgrade/preupgrade_fixups.sql
● Gather dictionary stats

– EXECUTE dbms_stats.gather_dictionary_stats;

Why should we migrate to Multitenant architecture
2016-09-23

Upgrade in Multitenant configuration

• One at a Time contd
● Unplug PDB1

– connect sys@cdb1

– alter pluggable database pdb1 close;

– alter pluggable database pdb1 unplug into
'/u01/app/oracle/manifest/pdb1.xml'

– drop pluggable database pdb1 keep datafiles;
● Connect to CDB in newer version (CDB2), and check compatibility to plug in

– connect sys@cdb2

– Select
DBMS_PDB.CHECK_PLUG_COMPATIBILITY(pdb_descr_file=>'/u01/app/or
acle/manifest/pdb1.xml'mpdb_name=>'PDB1') from dual;

– select message, status from pdb_plug_in_violations;
●

Why should we migrate to Multitenant architecture
2016-09-23

Upgrade in Multitenant configuration

• One at a Time contd
● Plug pdb to new container CDB2

– create pluggable database PDB1 using '/u01/app/oracle/manifest/pdb1.xml'
file_name_convert('/u01/oradata/cdb1/pdb1','/u01/oradata/cdb2/pdb1);

– alter pluggable database pdb1 open upgrade;
● Run catupgrd.sql script

– cd $ORACLE_HOME/rdbms/admin

– $ORACLE_HOME/perl/bin/perl catctl.pl -c "pdb1" -l /tmp catupgrd.sql
● PDB will be closed, startup it and recompile, run postupgrade_fixups

– @?/rdbms/admin/utlrp.sql

– @/u01/app/oracle/cfgtoollogs/CDB1/preupgrade/postupgrade_fixups.sql

– EXECUTE DBMS_STATS.gather_fixed_objects_stats;

Why should we migrate to Multitenant architecture
2016-09-23

Running Scripts Against Container and
Pluggable databases

• Using SET CONTAINER
cat run_on_pdb.sh
sqlplus / as sysdba <<EOF
ALTER SESSION SET CONTAINER = $1;
-- Perform smoe actions as before...
SHOW CON_NAME;
EXIT;
EOF
./run_on_pdb.sh PDB1

Why should we migrate to Multitenant architecture
2016-09-23

Running Scripts Against Container and
Pluggable databases

• Using TWO_TASK variable
● ! Does not work with connection as SYSDBA !

export TWO_TASK=PDB1
sqlplus l_user1/pass

• Oracle Scheduler
● New types of JOBs

– SQL_SCRIPT
– BACKUP_SCRIPT

Why should we migrate to Multitenant architecture
2016-09-23

Running Scripts Against Container and
Pluggable databases

• Secure External Password Store

Configure Oracel Net in sqlnet.ora

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /u01/app/oracle/wallet)
)
)

SQLNET.WALLET_OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0

Why should we migrate to Multitenant architecture
2016-09-23

Running Scripts Against Container and
Pluggable databases

• Secure External Password Store contd

Create Wallet

mkdir -p /u01/app/oracle/wallet
orapki wallet create -wallet "/u01/app/oracle/wallet" -pwd "wallet_password" -auto_login_local

Store PDB Credentials in Wallet

mkstore -wrl "/u01/app/oracle/wallet" -createCredential PDB1_ALIAS l_user1 user_password

Connect using Wallet
sqlplus /@PDB1_ALIAS

Why should we migrate to Multitenant architecture
2016-09-23

Running scripts on multiple PDB/CDB in
correct order

• Some Oracle supplied scripts must be applied in the
correct order, starting with the CDB$ROOT container.

• catcon.pl
● container specific logs

perl catcon.pl -d $ORACLE_HOME/rdbms/admin -b shrink_temp_log -c
shrink_temp.sql

$ ls shrink_temp_log*

shrink_temp_log0.log shrink_temp_log1.log shrink_temp_log2.log shrink_temp_log3.log

 - shrink_temp_log0.log - output from CDB$ROOT and PDB$SEED
 - shrink_temp_log3.log - general messages from task
 - shrink_temp_log1.log, shrink_temp_log2.log - output messages from PDBs

Why should we migrate to Multitenant architecture
2016-09-23

Running scripts on multiple PDB/CDB in
correct order

On all CDB/PDBs

perl catcon.pl -e -b sql_output -- --x"SELECT SYS_CONTEXT('USERENV', 'CON_NAME') FROM
dual"

On ALL databases except CDB$ROOT and PDB$SEED

perl catcon.pl -e -C 'CDB$ROOT PDB$SEED' -b sql_output -- --x"SELECT
SYS_CONTEXT('USERENV', 'CON_NAME') FROM dual"

On specifed databases

perl catcon.pl -e -c 'PDB1 PDB2' -b sql_output -- --x"SELECT SYS_CONTEXT('USERENV',
'CON_NAME') FROM dual"

Why should we migrate to Multitenant architecture
2016-09-23

Running scripts on multiple PDB/CDB in
correct order

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl

[-u username[/password]] [-U username[/password]] [-d directory]

[-l directory] [{-c|-C} container] [-p parallelism] [-e] [-s]

[-E { ON | errorlogging-table-other-than-SPERRORLOG }] [-I] [-g] [-f]

-b log_file_name_base -- { SQL_script [arguments] | --x'SQL_statement' }

Why should we migrate to Multitenant architecture
2016-09-23

Follow-up Courses

• In order of importance:

● Oracle Database 12c: Managing Multitenant Architecture (D79128GC10)

● Oracle Database 12c: New Features for Administrators Ed 2 (D77758GC20)

● Oracle Database 12c: High Availability New Features (D79794GC10)

● Oracle Database 12c: Administration Workshop Ed 2 (D78846GC20)

● Oracle Database 12c: Backup and Recovery Workshop Ed 2 (D78850GC20)

● Oracle Database 12c: Admin, Install and Upgrade Accelerated (D79027GC10)

● Oracle Database 12c: Data Guard Administration (D79232GC10)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70

