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Multitenant New Terminology

Basic terminology connected with multitenant architecture

● Non-CDB database
● CDB database
● ROOT container
● PDB
● UnPlug database
● Plug Database
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Multitenant New Terminology

• Non CDB database
● Traditional database not plugged into container for 

databases

• CDB database
● Database that is part of container with other databases. 
● Other databases can be ROOT container 

(CDB$ROOT), SEED (CDB$SEED) database, other 
pluggable databases (PDBs)
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Multitenant New Terminology

● ROOT container

– In other words ROOT database
– Main database in Container 
– Keeps among others

● Shared objects
● Common users
● Common roles
● PDB specific settings 
● One common instance



Why should we migrate to Multitenant architecture
2016-09-23

Multitenant New Terminology

• PDB
● Database that is part of container
● Was created in specific container or

– Was plugged from another container
– Was plugged from non-CDB database
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Multitenant New Terminology

• UnPlug database
● Process of describing database architecture in XML 

format, 
● Packageing it into tar format, ready to transfer and plug

• Plug database
● Process of attaching/including database into container

– From unplugged database
– From backup using RMAN
– From non-CDB database
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Description of Multitenant Architecture

• Multitenant is mainly consolidation option
● In opposite 

– to schemas for applications
– Multiple instances on one server

• Multiple databases in centrally managed platform

• Provides isolation
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Schema based consolidation

• Cons

● Name collision might prevent schema-based consolidation
● Schema-based consolidation brings weak security
● Per application backend point-in-time recovery is 

prohibitively difficult
● Resource management between application backends is 

difficult
● Patching the Oracle version for a single application backend 

is not possible
● Cloning a single application backend is difficult. Data Pump 

is the only option
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Multiple instances consolidation

• Cons
● Increased memory and CPU utilization
● High cost of ownership
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Benefits of Multitenant DBs

• Benefits
● Because of single instance for whole container

– Less background processes
– Better CPU utilization
– Better memory utilization

● Because of single dictionary for Oracle Supplied objects 
and packages
– Better storage utilization
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Benefits of Multitenant DBs

● Reduced DBA cost
– No demands for application changes
– Unified and simplified patching and upgrade'ing
– Separation of duties 

● DBA
● CDBA
● PDBA

● Backward compatibility with Non-CDB databases
● Integrated with Resource Manager (Inter PDBs plans)
● Simplified backup procedures
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Description of Multitenant Architecture

• Multitenant configuration
● Can act as RAC 
● Can act as single instance

• Singletenant configuration
● No fee for additional license
● One pluggable database in single Container EE/SE2
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Description of Multitenant Architecture

• Root database (CDB$ROOT) is like management 
database

• Cannot open PDB without opened Root database
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Description of Multitenant Architecture
• Each DB Shares

● Backgroud processes
● Shared memory
● Process memory
● Oracle metadata
● Redo Logs/Archive Logs
● Undo Tablespace
● Control Files
● Optionally – Temporary Tablespace
● Each PDB has corresponding SERVICE, by default 

PDB name + domain Name
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Types of containers
• Root Container

• Pluggable database containers
● Application Tablespaces
● Local Users/Roles
● Local Objects/Schemas/Privileges
● Local Non-Shared Application Metadata
● PDB Resource Manager Plan

● PDB$SEED

● 252 PDBs not counting PDB$SEED

● 512 Services in CDB

● V$CONTAINERS
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Separation of System and User Data

• Pristine installation

• Non - Mixed Metadata for User and System
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Horizontal Partitioning of Data Dictionary
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Separation of System and User Data

• Metadata for system objects (Oracle Supplied Objects) 
visible in each PDB by „links”, without duplicate'ing 
them

• CDB$ROOT is the name for root database

• CDB$SEED is the name for always Read-Only 
database, used to create empty PDBs

• PDBs communicates with each other using extremely 
fast Intra-CDB database links
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Common vs Local Users/Privileges/Roles

• Common Users
● CDB_USERS (COMMON) / DBA_USERS on PDB and 

ROOT scope
● Are created only in CDB$ROOT replicated into each 

PDB
● Can be granted COMMON (In CDB$ROOT) and 

LOCAL privileges/roles (In PDB) 

• Local Users
● Defined in a specific container
● Can connect/manage , be granted only local privileges
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Common vs Local Users/Privileges/Roles

• Common Roles
● Created only in ROOT
● Replicated in each PDB
● Can be granted to common users/roles
● All Oracle supplied roles are common roles

• Local Roles
● Created in specific container
● Cannot contain common privileges/roles
● Can be granted to common and local users
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Common vs Local Users/Privileges/Roles

• Common Privileges
● Granted in ROOT
● Can be granted to  common users/roles
● Can refer to common and local objects

• Local Privileges
● Granted in specific PDB
● Can be granted to common / local users/roles

•
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Metadata linked / Object Linked Objects

• Metadata Linked Dictionary Objects 
● Store metadata about shared objects only in root
● Each PDB has own copy of data pointing to ROOT 

metadata

• Object Linked Dictionary Objects 
● Metadata and data exists only in ROOT dictionary

● New column SHARING in DBA_OBJECTS 
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New Multitenant Dictionary Views
• CDB_XXX 

● DBA_XXX
– ALL_XXX

● USER_XXX

• DBA_XXX views maintained for backward 
compatibility

• CDB_XXX
● In Common Scope (ROOT) – artifacts from all currently 

open PDBs and ROOT
● New CON_ID column
● In Local Scope
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New Multitenant Dictionary Views
● Export ORACLE_SID=CDB1

– Select role,common,con_id from cdb_roles;
– Select role,common,con_id from dba_roles;
– Select name,open_mode from v$pdbs;

● Connect sys@PDB1 as sysdba
– Select role,common,con_id from cdb_roles;

● Displays common users and local PDB1 users

• V$_ VIEWS
● Select distinct status,con_id from v$bh order by con_id;
● Select object_id,oracle_username,locked_mode,con_id 

from v$locked_object;

mailto:sys@PDB1
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General Considerations about Multitenant

• One SPFILE 

• Data Guard at CDB level

• Flashback database at CDB level

• One characterset for all containers
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Creation of Container Databases

• Supported Tools
● OUI
● DBCA
● SQL Developer
● EM CC

• New parameter and statement
● enable_pluggable_database
● CREATE DATABASE .. ENABLE PLUGGABLE 

DATABASE
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Creation of Container Databases
● Export ORACLE_SID
● Set enable_pluggable_database parameter to true
● Startup nomount
● CREATE DATABASE CDB ENABLE PLUGGABLE DATABASE 

SEED 
FILE_NAME_CONVERT('/u01/oradata','/u01/oradata/seed');

● Alter session set "_oracle_scripts"=true;
● Alter pluggable database pdb$seed close;
● Alter pluggable database pdb$seed open;
● @catalog.sql
● @catblock.sql
● @catproc.sql
● @catoctk.sql
● @owminst.sql
● @pupbld.sql
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Creation of Container Databases

• SELECT NAME, CDB, CON_ID FROM V$DATABASE;
       NAME      CDB     CON_ID

       CDB1      YES          0

• File location parameters

● Using OMF – DB_CREATE_FILE_DEST

● Without OMF - PDB_FILE_NAME_CONVERT

•
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Creation of PDB

• CREATE PLUGGABLE DATABASE ...
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Creation of PDB
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Create from SEED

• CREATE PLUGGABLE DATABASE pdb1 ADMIN 
USER pdba1 IDENTIFIED BY oracle;
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Create from SEED

• Copied datafiles of user tablespaces

• Created SYSTEM,SYSAUX tablespaces

• Creates full catalog including metadata pointing to 
Oracle-Supplied objects

• Creates common users
● SYSTEM, SYS

• Creates a local dba user PDBA granted PDB_DBA 
role

• Creates default service
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Creation of a PDB by Cloning a PDB or a 
Non-CDB

• CREATE PLUGGABLE DATABASE salespdb FROM 
hrpdb

● You can use the CREATE PLUGGABLE DATABASE statement 
to clone a source PDB or non-CDB and plug the clone into the 
CDB

● Source can be a PDB in a local or remote CDB, or starting in 
Oracle Database 12c Release 1 (12.1.0.2), it can also be a 
remote non-CDB

● Great benefit of storage savings when filesystem support 
Snapshots copies

•
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Creation of a PDB by Cloning a PDB or a 
Non-CDB
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Creation of a PDB by Plugging In an 
Unplugged PDB

• CREATE PLUGGABLE DATABASE pdb2 USING 
'/u01/oradata/pdb1.xml' NOCOPY;

– In its unplugged state, a PDB is a self-contained set of 
data files and an XML metadata file

– XML metadata file describes PDBs
– Use NOCOPY option if target datafiles are in desired 

location
– Default is COPY
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Creation of a PDB by Plugging In an 
Unplugged PDB
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Creation of a PDB from a Non-CDB
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Other options

• Create empty PDB from SEED and USE
● DataPump (transportable tablespaces or full exp/imp)
● Golden Gate to replicate database
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Unplug/plug across different endiannesses

– When a customer-created tablespace is converted from 
one endianness to the other, using the RMAN convert 
command, it is only block headers that are changed 
(because these are encoded in an endianness-sensitive 
way)

– unplugged PDB contains data dictionary tables, and 
some of the columns in these encode information in an 
endianness-sensitive way

● Conclusions:
– There is no supported way to handle the conversion of 

such columns automatically. This means, quite simply, 
that an unplugged PDB cannot be moved across an 
endianness difference.
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Unplug/plug across different operating 
systems, chipsets

– PL/SQL native compilation might have been used
– Particular data dictionary table will hold machine code
– That is sensitive to the chipset of the platform where it 

was compiled
• Conclusions

– All natively compiled PL/SQL units in the incoming PDB 
must be recompiled before the PDB can be made 
available for general use
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Unplug/plug for patching the Oracle Patch 
version

– Soft Patch - changes only binaries
– Hard Patches - changes bianries and data dictionary 

(body not specification)
• Conclusions

– Since data dictionary is in ROOT PDB does not need to 
be changed
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Working with CDBs and PDBs

• Connection to PDBs
● By default there is still one listener process
● Each PDB has registered default unique accross CDB 

service
– SQL> Show CON_NAME
– SQL> Select name,pdb from cdb_services;

● Use DBMS_SERVICE.CREATE_SERVICE in non-
Oracle Clusterware/Oracle Restart configuration

● srvctl add service -d cdb1 -service pdb1_srv -pdb pdb1
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Working with CDBs and PDBs

• User with SET CONTAINER privilege
● Alter session set container=pdbapp1;

– Do not fire AFLTER LOGON TRIGGERS
● Show con_name;
● Alter session set container=CDB$ROOT;
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Working with CDBs and PDBs

• Command with a scope of pluggable database
● SQL> Alter System Flush Shared_Pool;
● SQL> Alter System Flush Buffer_Cache;
● SQL> Alter System Enable Restricted Session;
● SQL> Alter System Kill Session ..

• Command that affect whole CDB
● SQL> Alter System Checkpoint;
● SQL> Alter System Switch Logfile;
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Starting CDB

SQL> Connect sys@CDB1 as sysdba
SQL> Alter Pluggable Database PDB1 OPEN;
SQL> Alter Pluggable Database ALL OPEN;
SQL> Alter Pluggable Database ALL EXCEPT PDB1 OPEN;
SQL> Alter Pluggable Database PDB1 CLOSE IMMEDIATE;
SQL> Alter Pluggable Database ALL EXCEPT PDB1 CLOSE;
SQL> Alter Pluggable Database ALL CLOSE;
SQL> Connect sys@pdb1 as sysdba

SQL> Alter Pluggable Database Close;
or
SQL> Shutdown Immediate
SQL> Alter Pluggable Database Open Restricted;
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Modify PDB Settings

• connect sys@PDB1 as sysdba
● SQL> alter pluggable database datafile 

'/u01/oradata/pdb1/user01.dbf' ONLINE;
● SQL> Alter pluggable database default temporary 

tablespace TEMP1;
● SQL> Alter pluggable database STORAGE (MAXSIZE 

15G);

mailto:sys@PDB1
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Instance parameters for PDB

• One common spfile;

• New column ISPDB_MODIFYABLE in v$parameter 

• Persistent between restarts

• Stored in CDB$ROOT dictionary
● Alter System set job_queue=4 ;
● Select DB_UNIQ_NAME,PDB_UID,NAME,VALUE$ 

from pdb_spfile$;
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Users / Privileges / Roles Security

• Common User
● SQL> Create User c##user1 identified by oracle 

container=ALL;
● SQL> Grant create session to c##user1 container=ALL;

• Local User
● SQL> Create User user2 identified by oracle 

container=CURRENT;
● SQL> Grant create table to user2 (container=current);
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Users / Privileges / Roles Security

• Common role
● SQL> CREATE ROLE c##r1 CONTAINER=ALL;

– Can be granted common and local privileges
– Can be granted to local and common users

• Local role
● SQL> CREATE ROLE lr1 CONTAINER=CURRENT;

– Can be granted only local privileges
– Can be granted to common and local users in current 

container
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Differences in Backup and Recovery

• Export ORACLE_SID=CDB1

• rman target=/

• RMAN> BACKUP DATABASE;
● Above sequence of command backups all datafiles of 

ROOT and PDB containers

• RMAN> BACKUP PLUGGABLE DATABASE 
PDB1,PDB2;
● Backups datafiles of PDB1,PDB2 containers
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Differences in Backup and Recovery

• RMAN> BACKUP PLUGGABLE DATABASE 
„CDB$ROOT”;
● Backups only  ROOT container datafiles

• RMAN> BACKUP TABLESPACE SYSTEM;
● Backups system tablespace of ROOT container

• RMAN> BACKUP TABLESPACE pdb1:SYSAUX;
● Backups SYSAUX tablespace of PDB1
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Differences in Backup and Recovery

• Recovery 
● Instance recovery pertains to whole CDB 
● Flashback of database pertains to whole CDB

– All Containers are flashed-back
– If on one of PDBs Point In Time Recovery was perfomed, 

it is impossible to flashback to point earlier then 
PDBPITR was done

● During restart of CDB tempfiles are recreated
● Restart of PDB does not implicate local temporary 

tablespace recreation
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Differences in Backup and Recovery

• Recovery contd
● Lost CONTROLFILE/ROOT SYSTEM tablespace 

implicates downtime for all PDBs, for the time of 
controlfile restoration
– At CDB Level

● STARTUP NOMOUNT
● RESTORE CONTROLFILE FROM ..
● ALTER DATABASE MOUNT
● RECOVER DATABASE
● ALTER DATABASE OPEN RESETLOGS
● ALTER PLUGGABLE DATABASE ALL OPEN
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Differences in Backup and Recovery

• Recovery contd
● Media failure of single PDB  (SYSTEM TABLESPACE 

of PDB), when PDB is not closed, can affect whole CDB
● When PDB is open, on CDB level

– SHUTDOWN IMMEDIATE
– STARTUP MOUNT
– RESTORE PLUGGABLE DATABASE PDB1
– RECOVER PLUGGABLE DATABASE PDB1
– ALTER DATABASE OPEN
– ALTER PLUGGABLE DATABASE PDB1 OPEN
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Differences in Backup and Recovery

• Features like DATA RECOVERY ADVISOR works for 
CDB$ROOT, and all PDBs

• Block Corruption Validation
● VALIDATE DATABASE

– All containers affected
● VALIDATE DATABASE ROOT
● VALIDATE PLUGGABLE DATABASE PDB1,PDB2
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Differences in Backup and Recovery

• Database Duplication
● Create Auxiliary instance with 

enable_pluggable_database set to TRUE
● CDB$ROOT and CDB$SEED are created during 

duplication
– RMAN> DUPLICATE DATABASE TO CDB1 

PLUGGABLE DATABASE PDB1,PDB2
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AWR reports

• You can create AWR Reports for the CDB as a whole

• You can also create AWR Reports for a particular PDB
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Upgrade in Multitenant configuration

• Everything at Once

• One at a Time
● via unplug/plug

• Everything at Once
● Using DBUA against CDB will upgrade CDB$ROOT 

and all PDBs in container
● Pros

– One step operation
● Cons

– All pdbs are inaccessible for users
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Upgrade in Multitenant configuration

• One at a Time
● Connect to PDB being upgraded 

– connect sys@PDB1
● Execute preupgrade

– @/u01/app/oracle/product/12.1.0.2/omh1/rdbms/admin/preupgrd.sql
● If any errors met, it generates preupgrade_fixups.sql

– /u01/app/oracle/cfgtoollogs/cdb1/preupgrade/preupgrade_fixups.sql
● Execute fixups

– @/u01/app/oracle/cfgtoollogs/cdb1/preupgrade/preupgrade_fixups.sql
● Gather dictionary stats

– EXECUTE dbms_stats.gather_dictionary_stats;
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Upgrade in Multitenant configuration

• One at a Time contd
● Unplug PDB1

– connect sys@cdb1

– alter pluggable database pdb1 close;

– alter pluggable database pdb1 unplug into 
'/u01/app/oracle/manifest/pdb1.xml' 

– drop pluggable database pdb1 keep datafiles;
● Connect to CDB in newer version (CDB2), and check compatibility to plug in

– connect sys@cdb2

– Select 
DBMS_PDB.CHECK_PLUG_COMPATIBILITY(pdb_descr_file=>'/u01/app/or
acle/manifest/pdb1.xml'mpdb_name=>'PDB1') from dual;

– select message, status from pdb_plug_in_violations;
●
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Upgrade in Multitenant configuration

• One at a Time contd
● Plug pdb to new container CDB2

– create pluggable database PDB1 using '/u01/app/oracle/manifest/pdb1.xml' 
file_name_convert('/u01/oradata/cdb1/pdb1','/u01/oradata/cdb2/pdb1);

– alter pluggable database pdb1 open upgrade;
● Run catupgrd.sql script

– cd $ORACLE_HOME/rdbms/admin 

– $ORACLE_HOME/perl/bin/perl catctl.pl -c "pdb1" -l /tmp catupgrd.sql
● PDB will be closed, startup it and recompile, run postupgrade_fixups

– @?/rdbms/admin/utlrp.sql

– @/u01/app/oracle/cfgtoollogs/CDB1/preupgrade/postupgrade_fixups.sql

– EXECUTE DBMS_STATS.gather_fixed_objects_stats;
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Running Scripts Against Container and 
Pluggable databases

• Using SET CONTAINER
cat run_on_pdb.sh
sqlplus / as sysdba <<EOF
ALTER SESSION SET CONTAINER = $1;
-- Perform smoe actions as before...
SHOW CON_NAME;
EXIT;
EOF
./run_on_pdb.sh PDB1
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Running Scripts Against Container and 
Pluggable databases

• Using TWO_TASK variable
● ! Does not work with connection as SYSDBA !

export TWO_TASK=PDB1
sqlplus l_user1/pass

• Oracle Scheduler
● New types of JOBs

– SQL_SCRIPT
– BACKUP_SCRIPT
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Running Scripts Against Container and 
Pluggable databases

• Secure External Password Store 

Configure Oracel Net in sqlnet.ora

WALLET_LOCATION =
   (SOURCE =
     (METHOD = FILE)
     (METHOD_DATA =
       (DIRECTORY = /u01/app/oracle/wallet)
     )
   )

SQLNET.WALLET_OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0
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Running Scripts Against Container and 
Pluggable databases

• Secure External Password Store contd

Create Wallet

mkdir -p /u01/app/oracle/wallet
orapki wallet create -wallet "/u01/app/oracle/wallet" -pwd "wallet_password" -auto_login_local

Store PDB Credentials in Wallet

mkstore -wrl "/u01/app/oracle/wallet" -createCredential PDB1_ALIAS l_user1 user_password

Connect using Wallet
sqlplus /@PDB1_ALIAS
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Running scripts on multiple PDB/CDB in 
correct order

• Some Oracle supplied scripts must be applied in the 
correct order, starting with the CDB$ROOT container. 

• catcon.pl
● container specific logs

perl catcon.pl -d $ORACLE_HOME/rdbms/admin -b shrink_temp_log -c 
shrink_temp.sql

$ ls shrink_temp_log*

shrink_temp_log0.log shrink_temp_log1.log shrink_temp_log2.log shrink_temp_log3.log

 - shrink_temp_log0.log - output from CDB$ROOT and PDB$SEED
 - shrink_temp_log3.log - general messages from task
 - shrink_temp_log1.log, shrink_temp_log2.log - output messages from PDBs
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Running scripts on multiple PDB/CDB in 
correct order

On all CDB/PDBs

perl catcon.pl -e -b sql_output -- --x"SELECT SYS_CONTEXT('USERENV', 'CON_NAME') FROM 
dual"

On ALL databases except CDB$ROOT and PDB$SEED

perl catcon.pl -e -C 'CDB$ROOT PDB$SEED' -b sql_output -- --x"SELECT 
SYS_CONTEXT('USERENV', 'CON_NAME') FROM dual"

On specifed databases 

perl catcon.pl -e -c 'PDB1 PDB2' -b sql_output -- --x"SELECT SYS_CONTEXT('USERENV', 
'CON_NAME') FROM dual"
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Running scripts on multiple PDB/CDB in 
correct order

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl  

[-u username[/password]] [-U username[/password]] [-d directory] 

[-l directory] [{-c|-C} container] [-p parallelism] [-e] [-s] 

[-E { ON | errorlogging-table-other-than-SPERRORLOG } ] [-I] [-g] [-f] 

-b log_file_name_base -- { SQL_script [arguments] | --x'SQL_statement' }
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Follow-up Courses

• In order of importance:

● Oracle Database 12c: Managing Multitenant Architecture (D79128GC10) 

● Oracle Database 12c: New Features for Administrators Ed 2 (D77758GC20)

● Oracle Database 12c: High Availability New Features (D79794GC10)

● Oracle Database 12c: Administration Workshop Ed 2 (D78846GC20)

● Oracle Database 12c: Backup and Recovery Workshop Ed 2 (D78850GC20)

● Oracle Database 12c: Admin, Install and Upgrade Accelerated (D79027GC10)

● Oracle Database 12c: Data Guard Administration (D79232GC10)
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