Feature of our Oracle Databases - Why should we migrate to Multitenant architecture

Radosław Cisz rcisz@dataconsulting.pl

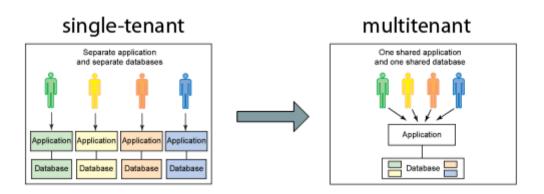
Basic terminology connected with multitenant architecture

- Non-CDB database
- CDB database
- ROOT container
- PDB
- UnPlug database
- Plug Database

- Non CDB database
 - Traditional database not plugged into container for databases
- CDB database
 - Database that is part of container with other databases.
 - Other databases can be ROOT container (CDB\$ROOT), SEED (CDB\$SEED) database, other pluggable databases (PDBs)

- ROOT container
 - In other words ROOT database
 - Main database in Container
 - Keeps among others
 - Shared objects
 - Common users
 - Common roles
 - PDB specific settings
 - One common instance

- · PDB
 - Database that is part of container
 - Was created in specific container or
 - Was plugged from another container
 - Was plugged from non-CDB database



- UnPlug database
 - Process of describing database architecture in XML format,
 - Packageing it into tar format, ready to transfer and plug
- Plug database
 - Process of attaching/including database into container
 - From unplugged database
 - From backup using RMAN
 - From non-CDB database

- Multitenant is mainly consolidation option
 - In opposite
 - to schemas for applications
 - Multiple instances on one server
- Multiple databases in centrally managed platform
- Provides isolation

Schema based consolidation

· Cons

- Name collision might prevent schema-based consolidation
- Schema-based consolidation brings weak security
- Per application backend point-in-time recovery is prohibitively difficult
- Resource management between application backends is difficult
- Patching the Oracle version for a single application backend is not possible
- Cloning a single application backend is difficult. Data Pump is the only option

Multiple instances consolidation

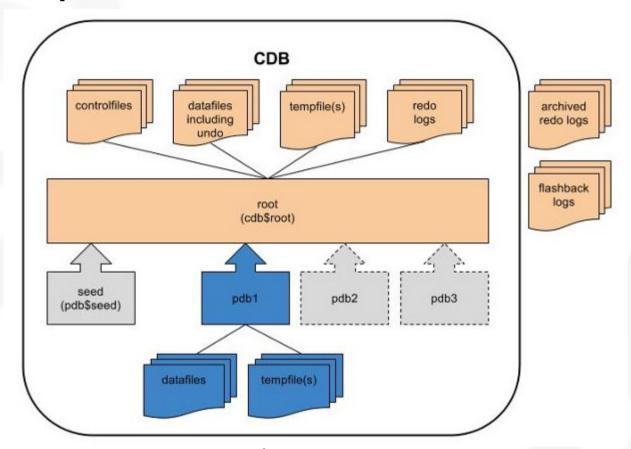
- · Cons
 - Increased memory and CPU utilization
 - High cost of ownership

Benefits of Multitenant DBs

- · Benefits
 - Because of single instance for whole container
 - Less background processes
 - Better CPU utilization
 - Better memory utilization
 - Because of single dictionary for Oracle Supplied objects and packages
 - Better storage utilization

Benefits of Multitenant DBs

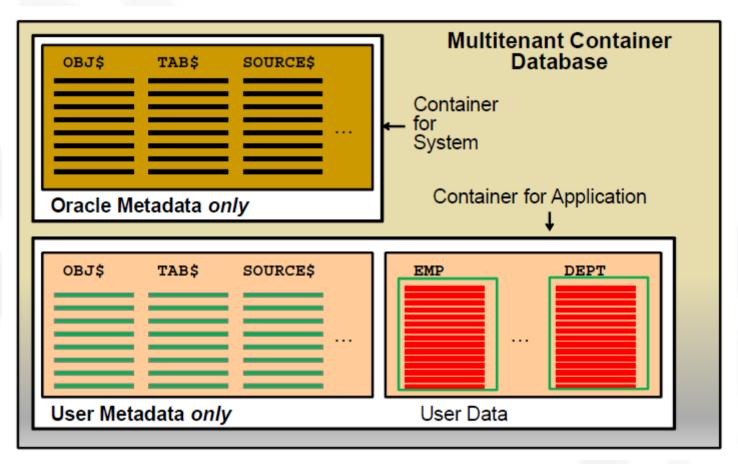
- Reduced DBA cost
 - No demands for application changes
 - Unified and simplified patching and upgrade'ing
 - Separation of duties
 - DBA
 - CDBA
 - PDBA
- Backward compatibility with Non-CDB databases
- Integrated with Resource Manager (Inter PDBs plans)
- Simplified backup procedures



- Multitenant configuration
 - Can act as RAC
 - Can act as single instance
- Singletenant configuration
 - No fee for additional license
 - One pluggable database in single Container EE/SE2

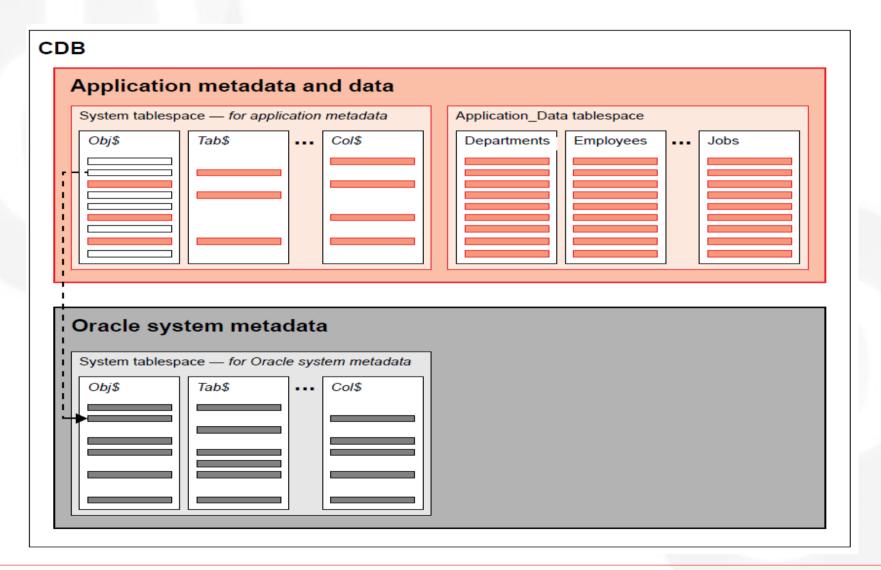
- Root database (CDB\$ROOT) is like management database
- Cannot open PDB without opened Root database

- Each DB Shares
 - Backgroud processes
 - Shared memory
 - Process memory
 - Oracle metadata
 - Redo Logs/Archive Logs
 - Undo Tablespace
 - Control Files
 - Optionally Temporary Tablespace
 - Each PDB has corresponding SERVICE, by default PDB name + domain Name


Types of containers

- Root Container
- Pluggable database containers
 - Application Tablespaces
 - Local Users/Roles
 - Local Objects/Schemas/Privileges
 - Local Non-Shared Application Metadata
 - PDB Resource Manager Plan
- PDB\$SEED
- 252 PDBs not counting PDB\$SEED
- 512 Services in CDB
- V\$CONTAINERS

Separation of System and User Data



- Pristine installation
- Non Mixed Metadata for User and System

Horizontal Partitioning of Data Dictionary

Separation of System and User Data

- Metadata for system objects (Oracle Supplied Objects)
 visible in each PDB by "links", without duplicate ing
 them
- CDB\$ROOT is the name for root database
- CDB\$SEED is the name for always Read-Only database, used to create empty PDBs
- PDBs communicates with each other using extremely fast Intra-CDB database links

Common vs Local Users/Privileges/Roles

Common Users

- CDB_USERS (COMMON) / DBA_USERS on PDB and ROOT scope
- Are created only in CDB\$ROOT replicated into each PDB
- Can be granted COMMON (In CDB\$ROOT) and LOCAL privileges/roles (In PDB)
- Local Users
 - Defined in a specific container
 - Can connect/manage, be granted only local privileges

Common vs Local Users/Privileges/Roles

Common Roles

- Created only in ROOT
- Replicated in each PDB
- Can be granted to common users/roles
- All Oracle supplied roles are common roles

Local Roles

- Created in specific container
- Cannot contain common privileges/roles
- Can be granted to common and local users

Common vs Local Users/Privileges/Roles

- Common Privileges
 - Granted in ROOT
 - Can be granted to common users/roles
 - Can refer to common and local objects
- Local Privileges
 - Granted in specific PDB
 - Can be granted to common / local users/roles

Metadata linked / Object Linked Objects

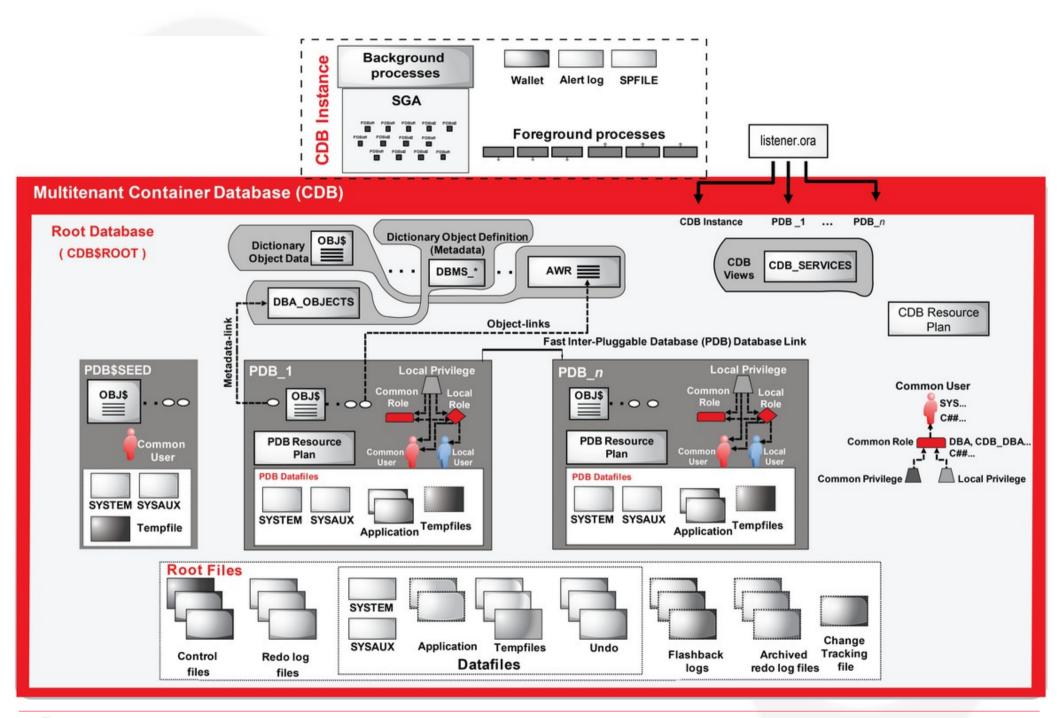
- Metadata Linked Dictionary Objects
 - Store metadata about shared objects only in root
 - Each PDB has own copy of data pointing to ROOT metadata
- Object Linked Dictionary Objects
 - Metadata and data exists only in ROOT dictionary
- New column SHARING in DBA_OBJECTS

New Multitenant Dictionary Views

- · CDB_XXX
 - DBA_XXX
 - ALL_XXX
 - USER_XXX
- DBA_XXX views maintained for backward compatibility
- · CDB_XXX
 - In Common Scope (ROOT) artifacts from all currently open PDBs and ROOT
 - New CON_ID column
 - In Local Scope

New Multitenant Dictionary Views

- Export ORACLE_SID=CDB1
 - Select role,common,con_id from cdb_roles;
 - Select role,common,con_id from dba_roles;
 - Select name, open_mode from v\$pdbs;
- Connect sys@PDB1 as sysdba
 - Select role,common,con_id from cdb_roles;
 - Displays common users and local PDB1 users
- · V\$_ VIEWS
 - Select distinct status,con_id from v\$bh order by con_id;
 - Select object_id,oracle_username,locked_mode,con_id from v\$locked_object;

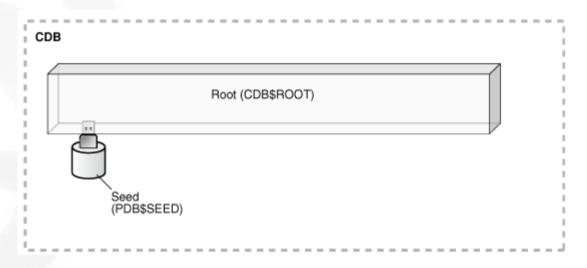


General Considerations about Multitenant

- One SPFILE
- Data Guard at CDB level
- Flashback database at CDB level
- One characterset for all containers

Creation of Container Databases

- Supported Tools
 - OUI
 - DBCA
 - SQL Developer
 - EM CC
- New parameter and statement
 - enable_pluggable_database
 - CREATE DATABASE .. ENABLE PLUGGABLE DATABASE


Creation of Container Databases

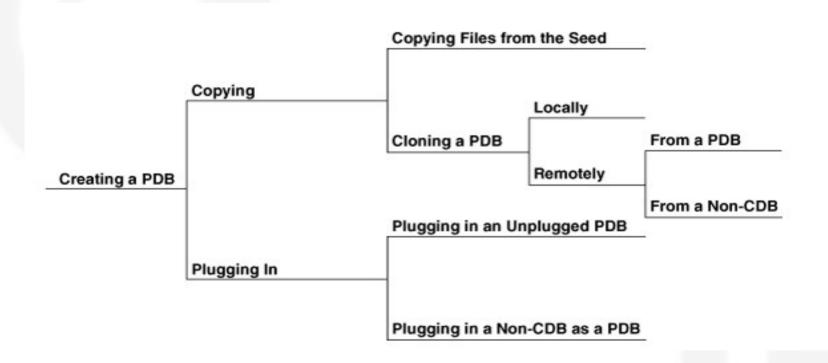
- Export ORACLE_SID
- Set enable_pluggable_database parameter to true
- Startup nomount
- CREATE DATABASE CDB ENABLE PLUGGABLE DATABASE SEED
 - FILE_NAME_CONVERT('/u01/oradata','/u01/oradata/seed');
- Alter session set "_oracle_scripts"=true;
- Alter pluggable database pdb\$seed close;
- Alter pluggable database pdb\$seed open;
- @catalog.sql
- @catblock.sql
- @catproc.sql
- @catoctk.sql
- @owminst.sql
- @pupbld.sql

Creation of Container Databases

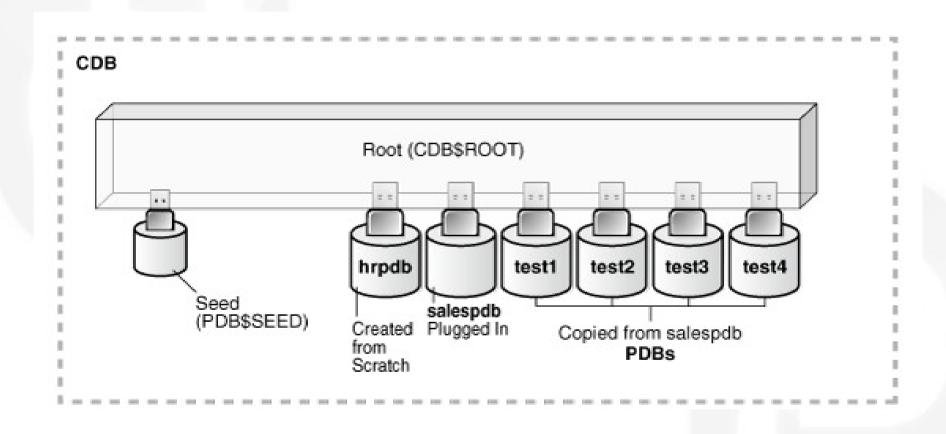
· SELECT NAME, CDB, CON_ID FROM V\$DATABASE;

NAME CDB CON_ID

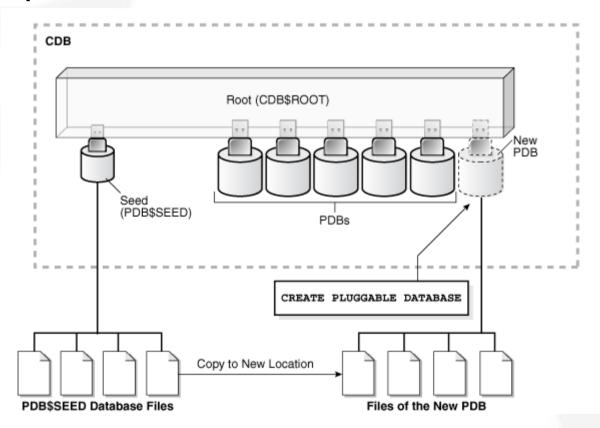
CDB1 YES 0


- File location parameters
 - Using OMF DB_CREATE_FILE_DEST
 - Without OMF PDB_FILE_NAME_CONVERT

Creation of PDB


· CREATE PLUGGABLE DATABASE ...

Creation of PDB

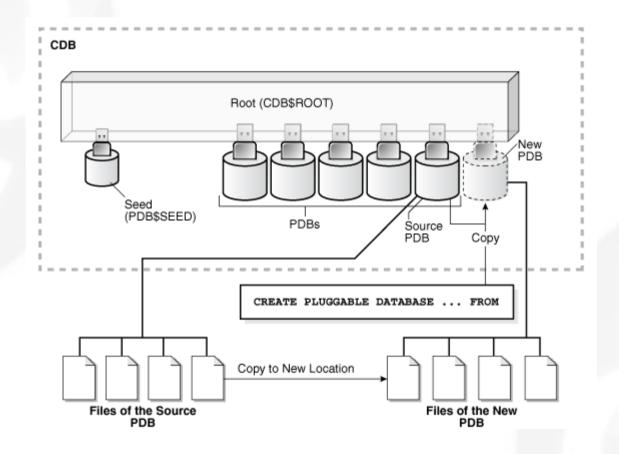


Create from SEED

 CREATE PLUGGABLE DATABASE pdb1 ADMIN USER pdba1 IDENTIFIED BY oracle;

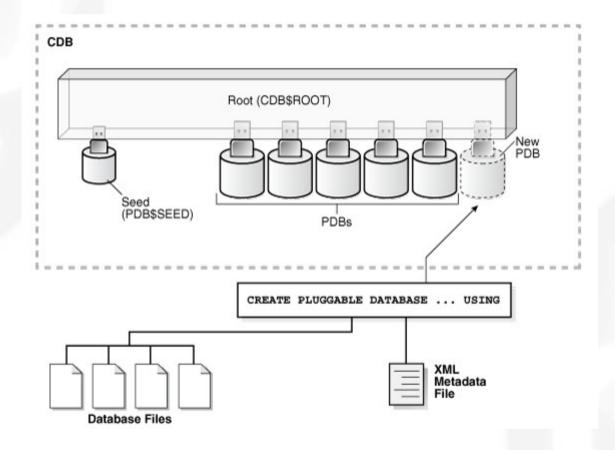
Create from SEED

- Copied datafiles of user tablespaces
- Created SYSTEM, SYSAUX tablespaces
- Creates full catalog including metadata pointing to Oracle-Supplied objects
- Creates common users
 - SYSTEM, SYS
- Creates a local dba user PDBA granted PDB_DBA role
- · Creates default service

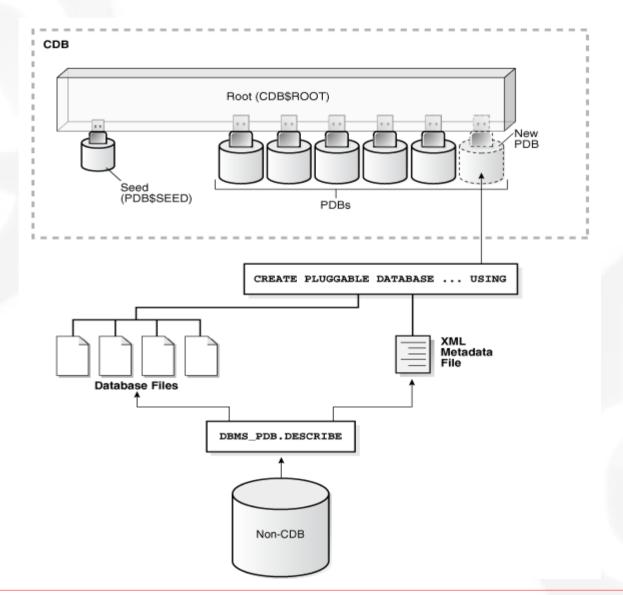

Creation of a PDB by Cloning a PDB or a Non-CDB

- CREATE PLUGGABLE DATABASE salespdb FROM hrpdb
 - You can use the CREATE PLUGGABLE DATABASE statement to clone a source PDB or non-CDB and plug the clone into the CDB
 - Source can be a PDB in a local or remote CDB, or starting in Oracle Database 12c Release 1 (12.1.0.2), it can also be a remote non-CDB
 - Great benefit of storage savings when filesystem support Snapshots copies

Creation of a PDB by Cloning a PDB or a Non-CDB


Creation of a PDB by Plugging In an Unplugged PDB

- CREATE PLUGGABLE DATABASE pdb2 USING '/u01/oradata/pdb1.xml' NOCOPY;
 - In its unplugged state, a PDB is a self-contained set of data files and an XML metadata file
 - XML metadata file describes PDBs
 - Use NOCOPY option if target datafiles are in desired location
 - Default is COPY


Creation of a PDB by Plugging In an Unplugged PDB

Creation of a PDB from a Non-CDB

Other options

- Create empty PDB from SEED and USE
 - DataPump (transportable tablespaces or full exp/imp)
 - Golden Gate to replicate database

Unplug/plug across different endiannesses

- When a customer-created tablespace is converted from one endianness to the other, using the RMAN convert command, it is only block headers that are changed (because these are encoded in an endianness-sensitive way)
- unplugged PDB contains data dictionary tables, and some of the columns in these encode information in an endianness-sensitive way

Conclusions:

 There is no supported way to handle the conversion of such columns automatically. This means, quite simply, that an unplugged PDB cannot be moved across an endianness difference.

Unplug/plug across different operating systems, chipsets

- PL/SQL native compilation might have been used
- Particular data dictionary table will hold machine code
- That is sensitive to the chipset of the platform where it was compiled

Conclusions

 All natively compiled PL/SQL units in the incoming PDB must be recompiled before the PDB can be made available for general use

Unplug/plug for patching the Oracle Patch version

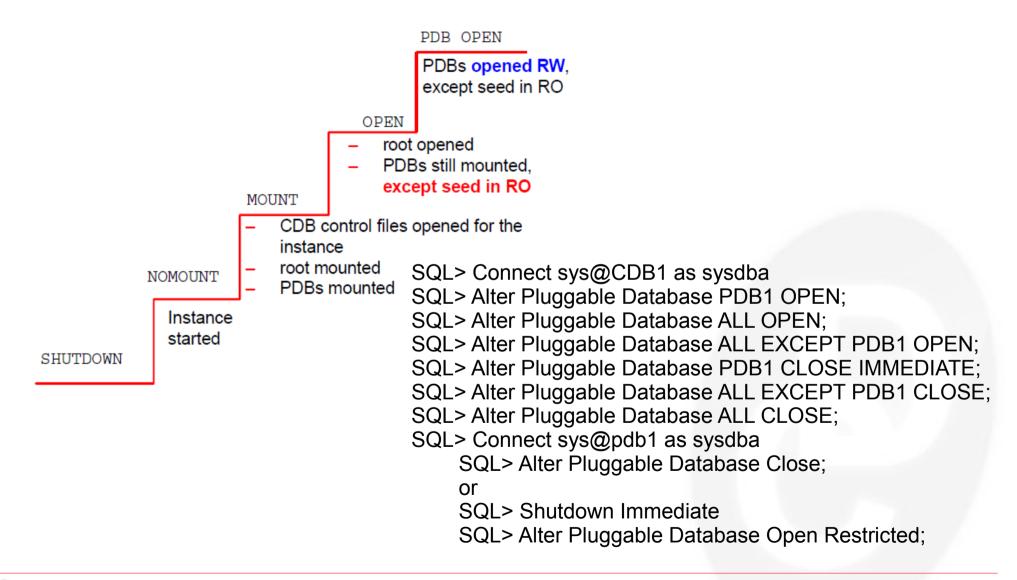
- Soft Patch changes only binaries
- Hard Patches changes bianries and data dictionary (body not specification)
- Conclusions
 - Since data dictionary is in ROOT PDB does not need to be changed

Working with CDBs and PDBs

- Connection to PDBs
 - By default there is still one listener process
 - Each PDB has registered default unique accross CDB service
 - SQL> Show CON_NAME
 - SQL> Select name,pdb from cdb_services;
 - Use DBMS_SERVICE.CREATE_SERVICE in non-Oracle Clusterware/Oracle Restart configuration
 - srvctl add service -d cdb1 -service pdb1_srv -pdb pdb1

Working with CDBs and PDBs

- User with SET CONTAINER privilege
 - Alter session set container=pdbapp1;
 - Do not fire AFLTER LOGON TRIGGERS
 - Show con_name;
 - Alter session set container=CDB\$ROOT;


Working with CDBs and PDBs

- Command with a scope of pluggable database
 - SQL> Alter System Flush Shared_Pool;
 - SQL> Alter System Flush Buffer_Cache;
 - SQL> Alter System Enable Restricted Session;
 - SQL> Alter System Kill Session ...
- Command that affect whole CDB
 - SQL> Alter System Checkpoint;
 - SQL> Alter System Switch Logfile;

Starting CDB

Modify PDB Settings

- connect sys@PDB1 as sysdba
 - SQL> alter pluggable database datafile '/u01/oradata/pdb1/user01.dbf' ONLINE;
 - SQL> Alter pluggable database default temporary tablespace TEMP1;
 - SQL> Alter pluggable database STORAGE (MAXSIZE 15G);

Instance parameters for PDB

- One common spfile;
- New column ISPDB_MODIFYABLE in v\$parameter
- Persistent between restarts
- Stored in CDB\$ROOT dictionary
 - Alter System set job_queue=4;
 - Select DB_UNIQ_NAME,PDB_UID,NAME,VALUE\$ from pdb_spfile\$;

Users / Privileges / Roles Security

- Common User
 - SQL> Create User c##user1 identified by oracle container=ALL;
 - SQL> Grant create session to c##user1 container=ALL;
- Local User
 - SQL> Create User user2 identified by oracle container=CURRENT;
 - SQL> Grant create table to user2 (container=current);

Users / Privileges / Roles Security

- · Common role
 - SQL> CREATE ROLE c##r1 CONTAINER=ALL;
 - Can be granted common and local privileges
 - Can be granted to local and common users
- Local role
 - SQL> CREATE ROLE Ir1 CONTAINER=CURRENT;
 - Can be granted only local privileges
 - Can be granted to common and local users in current container

- Export ORACLE_SID=CDB1
- rman target=/
- · RMAN> BACKUP DATABASE;
 - Above sequence of command backups all datafiles of ROOT and PDB containers
- RMAN> BACKUP PLUGGABLE DATABASE PDB1,PDB2;
 - Backups datafiles of PDB1,PDB2 containers

- RMAN> BACKUP PLUGGABLE DATABASE "CDB\$ROOT";
 - Backups only ROOT container datafiles
- · RMAN> BACKUP TABLESPACE SYSTEM;
 - Backups system tablespace of ROOT container
- RMAN> BACKUP TABLESPACE pdb1:SYSAUX;
 - Backups SYSAUX tablespace of PDB1

- Recovery
 - Instance recovery pertains to whole CDB
 - Flashback of database pertains to whole CDB
 - All Containers are flashed-back
 - If on one of PDBs Point In Time Recovery was performed, it is impossible to flashback to point earlier then PDBPITR was done
 - During restart of CDB tempfiles are recreated
 - Restart of PDB does not implicate local temporary tablespace recreation

- Recovery contd
 - Lost CONTROLFILE/ROOT SYSTEM tablespace implicates downtime for all PDBs, for the time of controlfile restoration
 - At CDB Level
 - STARTUP NOMOUNT
 - RESTORE CONTROLFILE FROM ..
 - ALTER DATABASE MOUNT
 - RECOVER DATABASE
 - ALTER DATABASE OPEN RESETLOGS
 - ALTER PLUGGABLE DATABASE ALL OPEN

- Recovery contd
 - Media failure of single PDB (SYSTEM TABLESPACE of PDB), when PDB is not closed, can affect whole CDB
 - When PDB is open, on CDB level
 - SHUTDOWN IMMEDIATE
 - STARTUP MOUNT
 - RESTORE PLUGGABLE DATABASE PDB1
 - RECOVER PLUGGABLE DATABASE PDB1
 - ALTER DATABASE OPEN
 - ALTER PLUGGABLE DATABASE PDB1 OPEN

- Features like DATA RECOVERY ADVISOR works for CDB\$ROOT, and all PDBs
- Block Corruption Validation
 - VALIDATE DATABASE
 - All containers affected
 - VALIDATE DATABASE ROOT
 - VALIDATE PLUGGABLE DATABASE PDB1,PDB2

- Database Duplication
 - Create Auxiliary instance with enable_pluggable_database set to TRUE
 - CDB\$ROOT and CDB\$SEED are created during duplication
 - RMAN> DUPLICATE DATABASE TO CDB1 PLUGGABLE DATABASE PDB1,PDB2

AWR reports

- You can create AWR Reports for the CDB as a whole
- You can also create AWR Reports for a particular PDB

- Everything at Once
- One at a Time
 - via unplug/plug
- Everything at Once
 - Using DBUA against CDB will upgrade CDB\$ROOT and all PDBs in container
 - Pros
 - One step operation
 - Cons
 - All pdbs are inaccessible for users

One at a Time

- Connect to PDB being upgraded
 - connect sys@PDB1
- Execute preupgrade
 - @/u01/app/oracle/product/12.1.0.2/omh1/rdbms/admin/preupgrd.sql
- If any errors met, it generates preupgrade_fixups.sql
 - /u01/app/oracle/cfgtoollogs/cdb1/preupgrade/preupgrade_fixups.sql
- Execute fixups
 - @/u01/app/oracle/cfgtoollogs/cdb1/preupgrade/preupgrade_fixups.sql
- Gather dictionary stats
 - EXECUTE dbms_stats.gather_dictionary_stats;

- One at a Time contd
 - Unplug PDB1
 - connect sys@cdb1
 - alter pluggable database pdb1 close;
 - alter pluggable database pdb1 unplug into '/u01/app/oracle/manifest/pdb1.xml'
 - drop pluggable database pdb1 keep datafiles;
 - Connect to CDB in newer version (CDB2), and check compatibility to plug in
 - connect sys@cdb2
 - Select
 DBMS_PDB.CHECK_PLUG_COMPATIBILITY(pdb_descr_file=>'/u01/app/or acle/manifest/pdb1.xml'mpdb_name=>'PDB1') from dual;
 - select message, status from pdb plug in violations;

One at a Time contd

- Plug pdb to new container CDB2
 - create pluggable database PDB1 using '/u01/app/oracle/manifest/pdb1.xml' file_name_convert('/u01/oradata/cdb1/pdb1','/u01/oradata/cdb2/pdb1);
 - alter pluggable database pdb1 open upgrade;
- Run catupgrd.sql script
 - cd \$ORACLE HOME/rdbms/admin
 - SORACLE_HOME/perl/bin/perl catctl.pl -c "pdb1" -l /tmp catupgrd.sql
- PDB will be closed, startup it and recompile, run postupgrade_fixups
 - @?/rdbms/admin/utlrp.sql
 - @/u01/app/oracle/cfgtoollogs/CDB1/preupgrade/postupgrade_fixups.sql
 - EXECUTE DBMS_STATS.gather_fixed_objects_stats;

Running Scripts Against Container and Pluggable databases

Using SET CONTAINER

```
cat run on pdb.sh
sqlplus / as sysdba <<EOF
ALTER SESSION SET CONTAINER = $1:
-- Perform smoe actions as before...
SHOW CON_NAME;
EXIT;
EOF
./run on pdb.sh PDB1
```


Running Scripts Against Container and Pluggable databases

- Using TWO_TASK variable
 - ! Does not work with connection as SYSDBA!

```
export TWO_TASK=PDB1 sqlplus l_user1/pass
```

- Oracle Scheduler
 - New types of JOBs
 - SQL_SCRIPT
 - BACKUP_SCRIPT

Running Scripts Against Container and Pluggable databases

Secure External Password Store

Configure Oracel Net in sqlnet.ora

```
WALLET_LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = /u01/app/oracle/wallet)
)
)

SQLNET.WALLET_OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0
```


Running Scripts Against Container and Pluggable databases

Secure External Password Store contd

Create Wallet

mkdir -p /u01/app/oracle/wallet orapki wallet create -wallet "/u01/app/oracle/wallet" -pwd "wallet password" -auto login local

Store PDB Credentials in Wallet

mkstore -wrl "/u01/app/oracle/wallet" -createCredential PDB1_ALIAS I_user1 user_password

Connect using Wallet sqlplus /@PDB1 ALIAS

Running scripts on multiple PDB/CDB in correct order

- Some Oracle supplied scripts must be applied in the correct order, starting with the CDB\$ROOT container.
- catcon.pl
 - container specific logs

```
perl catcon.pl -d $ORACLE_HOME/rdbms/admin -b shrink_temp_log -c shrink_temp.sql
```

```
$ Is shrink_temp_log*
```

shrink_temp_log0.log shrink_temp_log1.log shrink_temp_log2.log shrink_temp_log3.log

- shrink temp log0.log output from CDB\$ROOT and PDB\$SEED
- shrink_temp_log3.log general messages from task
- shrink_temp_log1.log, shrink_temp_log2.log output messages from PDBs

Running scripts on multiple PDB/CDB in correct order

On all CDB/PDBs

perl catcon.pl -e -b sql_output -- --x"SELECT SYS_CONTEXT('USERENV', 'CON_NAME') FROM dual"

On ALL databases except CDB\$ROOT and PDB\$SEED

perl catcon.pl -e -C 'CDB\$ROOT PDB\$SEED' -b sql_output -- --x"SELECT SYS_CONTEXT('USERENV', 'CON_NAME') FROM dual"

On specifed databases

perl catcon.pl -e -c 'PDB1 PDB2' -b sql_output -- --x"SELECT SYS_CONTEXT('USERENV', 'CON_NAME') FROM dual"

Running scripts on multiple PDB/CDB in correct order

```
$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl
[-u username[/password]] [-U username[/password]] [-d directory]
[-I directory] [{-c|-C} container] [-p parallelism] [-e] [-s]
[-E { ON | errorlogging-table-other-than-SPERRORLOG } ] [-I] [-g] [-f]
-b log_file_name_base -- { SQL_script [arguments] | --x'SQL_statement' }
```


Follow-up Courses

- · In order of importance:
 - Oracle Database 12c: Managing Multitenant Architecture (D79128GC10)
 - Oracle Database 12c: New Features for Administrators Ed 2 (D77758GC20)
 - Oracle Database 12c: High Availability New Features (D79794GC10)
 - Oracle Database 12c: Administration Workshop Ed 2 (D78846GC20)
 - Oracle Database 12c: Backup and Recovery Workshop Ed 2 (D78850GC20)
 - Oracle Database 12c: Admin, Install and Upgrade Accelerated (D79027GC10)
 - Oracle Database 12c: Data Guard Administration (D79232GC10)

